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A spectral element method (SEM) is introduced for the vibration analysis of rectangular 

plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often 

called the dynamic stiffness matrix) is formulated fiom the relations between the forces and 

displacements along the opposite two parallel edges. The distributed dynamic load is discretized 

into a sequence of equivalent line loads. The plate is then considered as a connection of two 

spectral plate elements with the joint  node line along which the equivalent line load acts. The 

spatial coordinate dependence of each equivalent line load is then removed through ~ihe spatial 

Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam 

like (I D) problem. The remaining solution procedure is therefore the same as that used for 

beam problems. Numerical tests show thai: the present SEM provides very accurate solutions 

when compared to finite element solutions. 
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1. Introduction 

Stractural dynamics has become an important 

research subject in engineering during the last for 

decades, and many structural analysis methods 

have accordingly been developed. The Finite 

element method (FEM) is certainly one of the 

most commonly used methods. However, it is well 

-known that a sufficiently large number of  finite 

elements is recessary in order to obtain reliable 

dynamic response of a structure, especially at high 

frequencies. Furthermore, the modal analysis, 

usually used in conjunction with FEM, is limited 

to the frequency regimes where relative spacing of 

natural frequencies remains large compared to the 

relative parameter  uncertainty (Plaut  and 

Huseyin 1973 ; v o n  Flotow 1987). Thus, alterna- 

tives to modal analysis of linear structural 

dynamics, applicable to the high Frequency regime, 
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have been considered by many researchers. 

Structural vibration can be considered as the 

superposition of incoming and outgoing traveling 

(elastic) waves (yon Flotow 1986). Hence accu- 

rate dynamic response of a structure may be 

obtained from the exact wave modes (or shape 

functions) of the structural dynamic equations in 

contrast to the finite element solutions based on 

approximated shape functions. 

in the literature, there have been efforts to 

obtain the dynamic response of discrete systems 

by efficiently utilizing the F F T  and inverse F F T  

(or IFI-T) algorithms (e.g., MeM and Miles 

1995). This type of solution approach is known 

as the speczral analysis method (SAM). Doyle 

(1986) is one of the first to apply SAM to wave 

propagation analysis of one dimensional struc- 

tures. He assumed the spectral form of dynamic 

response and applied the FFT to translbrm the 

external dynamic loads into fi'equency domain 

representations. He obtained the dynamic  

responses in the time domain by summing tip the 

spectral components of solutions (or wave 

modes) and then by inverse Fourier transforming 



566 Usik Lee and  doonkeun Lee 

the result into the time domain via the IFFT. 

Application of FFT and IFFT algorithms in the 

solution procedure makes it possible to efficiently 

take into account as many high frequency wave 

modes as needed, which may improve the solution 

accuracy significantly at high frequency : t h i s  

may not be true in modal analysis based on FEM. 

To extend SAM application to muhiply con- 

nected structures. Doyle (1987) introduced the 

concept of the spectrally formulated finite element 

(simply, spectral element). The Spectral element 

matrix of a structure, which is often called the 

dynamic stiffness matrix (e.g., Leung 1993 : 

Banerjee 1997), is formulated directly from the 

exact wave solutions or shape functions of a 

structure by treating the mass distribution exactly. 

Thus, in contrast to the conventional finite ele- 

ment in which mass distribution is approximately 

modeled, the spectral element treats the dynamic 

characteristics within at structure exactly as long 

as the mathematical model of the structural ele- 

ment is valid in a specified frequency regime. We 

may also benefit fiom the spectral element formu- 

lation in that the spectral elements can be readily 

assembled in a completely analogous way to that 

used in conventional FEM. 

Combining the al5rementioned promising char- 

acteristics of SAM with the structural discretiza- 

tion and assembling features of FEM leads to a 

new innovative solution method known as the 
spectral  e lement  m e t h o d  (SEM) (Doyle, 1989). 

Applications of SEM to the structural dynamics 

problems can be found in recent papers l\)r the 

multiply connected Timoshenko beam (Gopala- 

krishhan el al. 1992), for plane truss structures 

(Horr and Schmidt 1995 ; Lee and Kang, 1995 ; 

Lee and Lee 1996), and for beams and plates 

subjected to dynamic concentrated loads (Lee et. 

al. 1996 ; Lee and Lee. 1997) 

However, most SEM applications have been 

confined to one dimensional simple structures 

subject to concentrated dynamic loads. This is 

because special techniques are required to cope 

with the distributed dynamic loads and the multi 

directional wave characteristics m multi dimen- 

sional structures. Lee and Lee (1996) is likely to 

be the first to modify the conventional SEM and 

extend it to structures with distributed dynamic 

loads. However, this modified SEM is applicable 

only to one dimensional structures, i. e., beams. 

In the literature, Danial and Doyle (1995) recent- 

ly considered asemi infinite plate problem based 

on the SAM approach, but a SEM technique 

applicable to finite plates was not de~eloped. This 

is probably because the dispersive relation 

between two distinct wave numbers of a finite 

plate is not as simple as the case t\~r beams. 

Special techniques may thus be required to 

develop SEM tklr finite plates. 

The objectives of this paper are : ( I ) t o  

develop a SEM technique for finite rectangular 

plates subject to distributed dynamic loads ; and 

(2) to verify the accuracy of the present SEM 

through some numerical examples. 

2. Formulation of Spectral  Plate 
Element Matr ix  

Unlike beams, two dimensional structures have 

very complicated dispersive characteristics. Thus, 

a special SEM technique is required for two 

dimensional structures. Since the SEM technique 

developed in this paper can be extended to the 

rectangular plates with arbitrary boundary condi- 

tions with some modification, the present discus- 

sion will be confined to rectangular plates with 

simply supported boundary conditions at two 

opposite parallel edges, which are known to have 

analytical or closed l\~rm solutions. Consider a 

thin rectangular plate subject to a distributed 

dynamic load f ( ,v ,y , / ) .  Assuming a small ampli- 

tude vibration 71'(x,y,/). the dynamic equations 

of motion are given as (Szilards, 1974) : 

l ) V q c  + o-lr 
JJ/ <-)l'e f (.r,y.l) (I) 

where /) and m are the flexural rigidity and the 

mass density per unit area of the plate, respective- 

ly. 

Let the displacement history at an arbitrary 

point in the plate have the spectral representation 

(Doyle, 1989) 

7c(x, v, /)-ZTr,,(x. y : o~,,)c' ..... 
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:: ~Ek',~(:v : co,,) H; , (y  ; c0,,)~ ,'''' '~ (2) 

In the rernainder of  our development  the sub- 

scripts , not be written out explicitly for brevity. 

The spectral shape functions X ( x )  and W ( y )  in 

the :v and 3' directions must also satisfy relevant 

boundary condit ions.  The dispersive relation for 

a plale is given as 

(I,.~.+/,7.~) ~:= ~2" (Z2 ~ covSn/I)) (3) 

where /~-.~ and /L,. are the w a \ e  numbers in the 

:v and 3' d i rec t ions ,  respectix.ely. From Eq. (3), 

/c,, can be expressed in terms of/,7~, and e), and /cx 

in terms of/,-: and co. Thtts, in this paper, the wave 

characteristics within a plate will be expresented 

in terms of/r.,, and w. 

For  rectangular plates which have sirnply 

supported boundary condi t ions  at two opposite  

edges of ;c  0 and :v=:L,  the spectral shape func- 

tion ~(:v) can be readily derived as 

X (:c "/c.,) : (";~'x (. ,k~.- (4)  

with the characteristic wave number #~ defined as 

/c : ;;K (;;:=1 ~ 3, ...) (5) x -  L ' "  

In this case, the spectral shape function W ( y )  is 

R)und to be 

I : { ( y  /c.,-,co) : tJ'~c ''"~' f t3'2c' ;~'~' 
k v /, ',V /~':~c' :I3,,c (6) 

where 

k .... v~2 k~ (7) 

The spectral displacement n ' (x ,y )  can be re- 
written from Eqs. (2), (4) and (6), omi t t ing lhe 
subscripts l\)r brevity, as follows : 

w (:~:, y : k.,-. c o ) X ( : v  ; ,{,) i f ( y ;  Icy co) 
- s  ;/,-x) [ O ( y  : k,-, ~ ) ] { I~ ,  i~.., B:, B J '  (8) 

where 

[ ;vsJ2:;/'f~YC iv's2~z/, rL!,(,vr ,~-~2v 
: O(y; , { 'x ,  0.')] =L ~ 

~'s~2 k,.: ,.] (9) C 

To derive the spectral element matrix for a 

plate, the same procedure that is used for beams 

in the previous works by the authors will be used. 

Figure I shows a spectral plate element which has 

dimensions [. and / in the x-and y-di rec t ions ,  
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Fig. 1 Geometry of a rectangular plate element. 

respectively. The spectral nodal DOFs  on the 

boundary edges at y = 0  and y = /  can be expres- 

sed from Eq. (8) in the form of 

{ ~,',,~,;,," 1:i3 a~/} " X (v) [cz t/h-, co) ] 
{/3, 13., B:~ I_~} ~ (lo) 

where (9 indicates the partial derivat ive with 

respect to y. In Eq. (10), w0=f i , (0 ) ,  w0=uT' (0) ,  

#~ t= : , , ( / ) ,  and fis~ ; U ( / )  are defined, and the 

( 4 x 4 )  matrix [cz(kx,o0)l is tabulated in the 

Appendix.  The spectral shear force and bending 

moment,~ on the boundary  edges at y 0 and y = / '  

can be written as 

i:~:=D[a:+, ' '  + a ~  1 8 ,?  (2 ,.:) (11) 
L , &CSy _1 

t - ~ w  ~ / (12) 
. . ~ -  (Jr J 

where u is Poisson's ratio. 

Using Eqs. (11) and ( t2) ,  the spectral nodal 

moments and forces can be expressed in the form 

{ H, Mo ?, M,}"=X(x)!/3(/~~, co)] 
{/~, k;~/% B , } '  (13) 

where the ( 4 x 4 )  matrix [/~(#,. (o)1 is also 
tabulated in the Appendix. Combining Eq. (10) 
and (13) resuhs in 

(14) 

where rcy]=--[/~l [ice] I is the spectral element 

matrix for plates. The spectral plate elements can 

be assembled in an analogous w a ) t o  the method 

used in FEM. 
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3. Eouivalent  Beam-Like  Problem 
Representat ion 

Distributed dynamic loads acting on a rectan- 

gular plate can be discretized into many equiva- 

lent line loads. Figure 2(a) shows an example of 

a square plate subjected to a centered uniform 

square load f ( x , y , t ) .  In this example, the dis- 

tributed load is discretized into a series of equiva- 

lent line loads which are parallel to the x-axis. 

Accordingly the plate should also be discretized 

into two spectral plate elements with the node line 

parallel to x-axis, as shown in Fig. 2(b). The 

Dynamic response of the plate can be obtained by 

summing up all the dynamic responses due to 

each of the equivalent line loads. 

The equivalent line load at y ~ has magni- 

tude f ( x ,  ~, t)d-~ and is a function of spatial 

coordinates x and time t. The equivalent line 

load can be Fourier transformd with respect to x 

as well as with respect to time t to yield f ( ~  �9 k~, 

w) zJ~ e, where the symbol b a r ( )  represents the 

result o[" Fourier transform with respect to x. This 

procedure may remove the x axis dependence of 

the equivalent line load and the plate (2-D) 

problem is transformed into an equivalent beam 

(I D) problem, as illustrated in Fig. 2(c). We 

benefit from this procedure in that the general 

solution procedure developed for beams in the 

previous works can be utilized to solve the vibra- 

tion problems of plates via the equivalent beam 

problem representation. 

4. General  Solution Procedures 

Fig. 2 

(a) 

(b) 

(c) 

Spectral element discretization procedure for 
plate problems : (a) a square plate subject 
to a centered square load, (b) dJscretization 
into two spectral plate elements with a line 
load, and (c) its equivalent one dimen- 
sional problem representation. 

The foregoing structural and load discretiza- 

tion procedures represent a plate as a connection 

of two spectral plate elements with an equivalent 

line load acting along the connection node line, 

as shown in Fig. 2(b). Equation (14) shows that 

the spectral element matrix is formulated only in 

terms of the wave number kx at a specified fre- 

quency 02. Thus, by using the spatial Fourier 

transformed equivalent line load f(ce ; /Cx, c0)zlg e, 

two spectral plate elements can be assembled to 

yield a global spectral matrix equation for each 

equivalent line load. Applying the simply suppor- 

ted boundary conditions at y = 0  and L, as an 

example, the global spectral matrix equation can 

be condensed in the form of 

,J~'[~ J L 0 0"21 0"22 0.24J 

t ~ / 
f (~ ; X'x, oo)zl~ e (15) 

0 

0 
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or, sirnply 

.iz/~} = [S  (/i-x, co) ]-~{Z/F} (16) 

where [ 2 ]  is the condensed global spectral 

matrix, {z/W} the global spectral nodal DOF 

vector, and {Z/F} is the global spectral force 

vector. In Eq. (15), the superscripts (I and 2) 

used for the spectral element components, d, 

indicate the number of spectral elements and the 

subscripts (1 to 4) indicate the component num- 

ber of the corresponding spectral element matrix. 

Also, the subscripts 1~ 2, and 3 used in {/_/H~} 

indicate the node lines at y = 0 ,  y: r and y=:L,  

respectively, as shown in Fig. 2(c). Note that the 

spectral nodal DOF vector {z/[7~ >} is a function of 

the characteristic wave number k~ and frequency 

CO. 

Following exactly the same procedure as used 

in the one dimensional (beam) problem (Lee 

and Lee, 1996), the dynamic response at a point 

(x, y) due to a line load acting at y = ~  can be 

obtained from 

A w ( x ,  Y 4 ,  kx, co)=~ '~(x) [O(y  ; kx, co)l �9 

Ea(k~,., co)]-"[c.][s co)]-~{d} �9 
f ( $  ; k~, (,))AS (17) 

where i~Q], Ia],  and [_E] are defined in Eqs. 

(10), ( i l ) ,  and (16). The matrix [c] relates the 

spectral nodal DOF {z/~P} to {Z/W}. Similarly, the 

vector 'd}  is determined fi'om the force vector 

{Z/17} ilself, as explained in the beam problem 

( lee  and Lee, 1996). 

Equation (17) gives the dynamic response due 

to an equivalent line load, thus the total dynamic 

response can be obtained from 

co) f"=:~'" ~, ~:0 (x, y ; k . ,  Z/u, (x, y : k~., co) 
J a = ~ / L  

(18) 

A Trapezoidal numerical integration algorithm 

(Chapra and Canle, 1989) may be applied to Eq. 

(t8). 

One notes that the dynamic response given by 

Eq. (18) is obtained in both the frequency co and 

wave number kx domains. Thus the dynamic 

response in the time domain can be obtained from 

the [FFT algorithm, first with respect to the wave 

number kx, and then with respect to frequency co 

as fbllows : 

u ' ( x , y , t )  =: ~ " ; " IFF~, ,~ L I F F 7  k,,~ t z~,,~ (x ,y  

k ..... co,,) }] (19) 

5. I l l u s t r a t i v e  E x a m p l e s  

Consider a simply-supported square plate hav- 

ing the dimension L=2.8  m and thickness h--O. 

01 m as shown in Fig. 3. Material properties of 

the plate are given as D=6.73 /oN, m = 2 8 k g / m  2, 

and the loss factor is r/ 0.03. Two types of 

dynamic load are considered in this study : a 

centered point load of magnitude 100 N (see Fig. 

3 (all), and a centered square load of magnitude of 

(a) Point Load 

Fig. 3 

(b) Distributed Load 

Examples of simply-supported square plates 
subjecl to (a) a centered point load of 
magnitude 100 N, and (b) a centered square 
dynamic load of magnitude 100 N / m  "z uni- 
formly distributed over I/4 area o[" the plate, 
both act for 0.1 seconds. 

Fig. 4 Comparison of the solution convergence 
ratio and CPU times for SEM and FEM. 
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(b) Analytical(20 x 20 modes) 
mSEM 
FEM(I 4 x 14  elemems) 

~ 

-120 I I I - -  

0 60 120 180 240 300 

Frequency (Hz) 

Comparison of the dynamic and frequency 
responses at the middle of a square plate 
subject to a centered point load of magnitude 
100 N, acting for 0.1 seconds : (a) dynamic 
responses, and (b) frequency responses. 

100 N/*rfl uniformly distributed over a quarter 

area of the plate (see Fig. 3 (b)).  Both loads act 

for 0.1 seconds. The non dimensional displace- 

ment responses (time histories and frequency 

response ['unctions) by three different solution 

methods are compared in Figs. (5) and (6). 

Comparisons are made for the solutions which 

sufficiently converged within 0.03%, as shown in 

Fig. (4) 

In general, the solutions by the present SEM 

are very close to the analytical exact solutions. 

The finite element solutions deviate significantly 

from the exact solutions with time, especially at 

high frequency. We have algo observed that sub- 

stantial savings in computer time are achieved for 

obtaining solutions that converge to within 0.03% 

when the present SEM is used, in faver of FEM. 

6. Conclusions 

In this paper, a modified spectral element 

method is developed for rectangular plates sub- 

1.0 
- -  Analytical(2( x 20 rnodesl 
-- m S E M ( 1 8  divis ions)  E 

.5 - FEM(14 x 14 elements)  

71 
' i  -.5 8 - 

z 
-1.0 s _ _  

I I t 

1 2 3 4 

Time (sec) 

40 I . . . . . . . . .  
, ~ ) ~ , I , K . ~  - - A n a l y t i c a l ( 2 0  x 2 0 m o d e s )  

m S E M ( 1 8  divis ions)  
0 FEM(14 x14 elements)  

-~ .~ -40 

E -80 ~ x 

g 
Z 

-120 . . . . . . .  a I I - -  

60 120 180 240 300 

Frequency (Hz) 

Fig. 6 Comparison of the dynamic and frequency 
responses at the middle of a square plate 
subject to a centered square dynamic load of 
magnitude 100 N / m  "~, uniformly distributed 
over I/4 area of the plate and acting for 0.1 
seconds : (a) dynamic responses, and (b) 
frequency responses 

jected to distributed dynamic loads. Numerical 

tests show that the present SEM provides very 

accurate solutions when compared with finite 

element solutions. Since the present SEM is appli- 

cable only to rectangular plates, it is mandatory 

to develop a further generalized SEM for plates 

with arbitrary geometry and boundary condi- 

tions. This issue is a topic of ongoing research 

and the results will be discussed in a future paper, 
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Appendix 

Elements of matrix [ ~ u ]  : 

~ i  1 - - -  ~ i 2  = =  1~/13 ~ (~14 ] 

~ 2 1  . . . .  0~!2 - -  i k y  (~23 - ~ '24  = :  k y  

Og'31 = ~t321 : =  (c:3 ik -v /  C~33: f f 341 - -~?  k'vl 

/~41 = / ]{ : ' r  i k ' v l  (-~t42 = - -  i k y  ( f l - i k y t  

&:~ = kye ay~ &4 = - kye- k:,,L 

Elements of matrix [ /3 i j ]  : 
�9 2 ~_ /~,, = fl~2= - ~DkAk; ( 2 -  u) k;} 

fl,.~ --b'H=Dky{k~,- ( 2 -  ~,) k~} 

~:~, = - iDkAk,~,§ ( 2 -  ~) k~} c-, ~,~ 

s D k A  ~ -  ( 2 -  ~) k~  e 

~:. = -Dky{  k~,- ( 2 -  ~) k~e - k - ~ ,  
/M = -- D{k~ + ~k~}e 'k'~ 
/3 -- r)l l.'e + z.'~ ,kyt 

4 2 - -  L t l~y - ~JaXJg ) 

1~ -- FJl k2 ./C21 okYt 4 3 - - -  l J /  ~ 3 ' - -  M t X ~ ( ~  

2 kv l  3 , . =  D{ /d  -ukx}e 


